Recent Improvements on the Thermal Infrared Hyperspectral Images of the SIELETERS Airborne System

Ja

O. Gazzano, Y. Ferrec, C. Coudrain and L. Rousset-Rouvière (ONERA / DOTA)

HE FRENCH AEROSPACE LAB

ONERA SYSIPHE

→ Hyperspectral imaging

Objectives:

- To develop skills, tools and technologies for the design and the manufacturing of an airborne hyperspectral imaging system
- To improve knowledge of IR phenomenology
- To be able to specify an operational system

SYSIPHE

MWIR and LWIR bands

ODIN

VIS, NIR and SWIR bands

- High spectral and spatial resolution
 0.5 m resolution 500 m swath 600 spectral bands
- A collaboration between France and Norway:
- > ONERA, DGA
- Norsk Elektro Optikk (NEO), Forsvarets forskninginstitutt (FFI)

What can we get from the instrument?

What can we get from the instrument?

	MWIR	LWIR
Spectral range	3.0 - 5.2 μm	8.1 – 11.5 µm
Spectral resolution	11 cm ⁻¹ 17 nm at 4 μm	5 cm ⁻¹ 50 nm at 10 μm
# spectral bands	~ 130	~ 75
Pixel FOV	0.25 mrad	
Total FOV	15°	
Spatial resolution	50 cm at 2 000 m	
F-number	F4.0	F3.0
Calibration	Spectral radiance, Emissivity/temperature	
Georeferencing		

- MCT IR from Lynred (1016 x 440 px)
- Entirely cryogenic (liquid nitrogen, 77K)
- Stabilized

SIELETERS / SYSIPHE airborne campaigns

First flight, First images

DLR Dornier Do228 aircraft

2 different aircrafts (from DLR and from IMAO)

19 flights

2 night flights

50+ people involved

How does the system work?

Airborne measurement (150 Hz)

ONERA SYSIPHE

Spectral radiance (W/m²/sr/cm⁻¹)

0.14

0.12

0.08 -

Example : False-color RGB image $R = 9.12 \mu m$, $G = 9.52 \mu m$, $B = 10.75 \mu m$)

REGISTRATION

Raw image in the LWIR

Raw image in the LWIR

Same image in the LWIR with the non-uniformity correction

Raw image in the LWIR

6

False-color RGB image in the LWIR

R: 9.1 μm V: 9.5 μm B: 10.7 μm

Raw image in the LWIR

6

False-color RGB image in the LWIR

ONERA

R: 9.1 μm V: 9.5 μm B: 10.7 μm

SYSIPHE A

How did we improve the data processing programs?

Simulator of the SIELETERS raw airborne images

How did we improve the data processing programs?

False-color RGB image (LWIR)

- 1. Temporal instability of the IR sensor
- 2. Non-uniformity correction using in-flight images
- 3. Need to filter interference fringes
- 4. Introduce fringes residuals on the corrected images
- 5. Vertical oscillations on the spectral images

- 1. Temporal instability of the IR sensor
- 2. Non-uniformity correction using in-flight images
- 3. Need to filter interference fringes
- 4. Introduce fringes residuals on the corrected images
- 5. Vertical oscillations on the spectral images

Solution :

- **Detect** the fringes residuals
- Remove the residuals

Some results

Georeferenced images: thermal infrared bands (MWIR and LWIR)

Spectrum from the 2015 campaign

Volleyball court

Spectrum from the 2015 campaign

Spectrum from the 2015 campaign Polystyrene target

Spatial noise over a uniform area (sea)

Side product: Digital surface model from the SIELETERS images

Conclusions

 Very good results from past 4 campaigns
 Recent improvements on the quality of the hyperspectral images
 Some applications: Atmosphere compensations ; Temperature – emissivity separation ; Data classification ; Anomaly detection
 Ground version of SIELETERS under development:
 Gas detection ; high spatial and spectral resolution imaging

SIELETERS / SYSIPHE is opened to external users:

- NATO, EDA or bi-lateral arrangement
- EUFAR, European Facility for Airborne Research (SIELETERS)
- National and international community: scientific, industrial or institutional

Thank you for your attention

D-CFFU

THE FRENCH AEROSPACE LAB

Jn

HySpex ODIN-1024 main characteritics

Parameter	VNIR	SWIR
Spectral range	400 – 1000 nm	950 – 2500 nm
Spectral resolution	3.0 nm	6.1 nm
Pixel FOV	0.25 mrad / 0.125 mrad	0.25 mrad
Total across track FOV	15°	15°
Spatial resolution	1024 px / 2048 px	1024 px
F-number	F1.64	F2.0

- Common fore-optics design
- On-board calibration system

Sieleters main characteristics

Parameter	MWIR	LWIR
Spectral range	3.0 - 5.2 μm	8.1 – 11.5 µm
Spectral resolution	11 cm ⁻¹	5 cm ⁻¹
Pixel FOV	0.25 mrad	0.25 mrad
Total across track FOV	15°	15°
Spatial resolution	1016 px	1016 px
F-number	F4.0	F3.0

- Two separate static Fourier transform spectral imagers
- MCT IR-FPAs from Sofradir, 1016x440 pixels
- Entirely cryogenic (liquid nitrogen, 77K)
- Stabilized

Simulator of the SIELETERS raw airborne images

1- Cube of oversampled images at many wavenumbers σ

5- Shift of the images to generate the whole sequence

Simulated in flight images (in current)

Useful tool to:

- ✓ Understand related physical effects
- / Improve the quality of the images

Sieleters images registration

Method 1

Image correlation (2013 campaign)

✓ << 0.1 pixel registration possible

Conditions: Conditions: Conditions:

□ No bright or moving objects

Method 2

Line of sight (2015 campaign)

- Using: Metadata recorded during the flight
 - Digital elevation model
- ✓ Produce georeferenced images
- ✓ Ground independent

Resolution: ~ 0.1 pixel (*ie* 5 cm on the ground)

Perfect registration (simulation)

Noise registration (simulation)

Raw images

Registered images

New method

Sieleters images registration: results on the spectral images

Spectral images in the LWIR

New approach

Using only the line of sight (method 2)

Geometrical improvements of the spectral images Registration with the line of sight + Images correlation

Oscillations on the spectral images:

- Vertical
- Period depends on:
 - The wavelength
 - Dependents on the method used to correct non uniformities of the IR sensor

Fringes removal in the non-uniformity correction

Fringes removal in the non-uniformity correction

Spectral image at 9.2 µm

Without the correction Spectral image at 10.7 µm

With the correction

